1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
| class Qwen2LM_GCM(torch.nn.Module): def __init__( self, llm_input_size: int, llm_output_size: int, speech_token_size: int, llm: torch.nn.Module, sampling: Callable, length_normalized_loss: bool = True, lsm_weight: float = 0.0, gcm: int = 2, # group code modeling, can be 1, 2, 4, 8 ... from vall-e2 ): super().__init__() self.llm_input_size = llm_input_size self.llm_output_size = llm_output_size self.speech_token_size = speech_token_size
# 2. build speech token language model related modules self.sos_eos = 0 self.task_id = 1 self.fill_token = 2
self.llm_embedding = torch.nn.Embedding(2, llm_input_size) self.llm = llm
self.group_embedding = nn.Linear(llm_input_size*gcm, llm_input_size) self.group_prediction = nn.Linear(llm_output_size, llm_output_size*gcm)
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3) self.criterion_ce = LabelSmoothingLoss( size=speech_token_size + 3, padding_idx=IGNORE_ID, smoothing=lsm_weight, normalize_length=length_normalized_loss, )
# 3. [Optional] build speech token related modules self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
# 4. sampling method self.sampling = sampling
self.gcm = gcm
def sampling_ids( self, weighted_scores: torch.Tensor, decoded_tokens: List, sampling: int, ignore_eos: bool = True, ): while True: top_ids = self.sampling(weighted_scores, decoded_tokens, sampling) if (not ignore_eos) or (self.speech_token_size not in top_ids): break return top_ids
def pad_unpad_sequence(self, sos_eos_emb, text_token, text_token_len, task_id_emb, speech_token, speech_token_len): text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True) speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))] lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32) lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID) return lm_input, lm_input_len
def de_group(self, lm_output, text_token_len, speech_token_len): sos_eos_emb = [] text_token = [] task_id_emb = [] speech_token = [] for t, i in enumerate(lm_output): sos_eos_emb.append(i[0, :]) text_token.append(i[1:text_token_len[t]+1]) task_id_emb.append(i[text_token_len[t]+1, :]) speech_token.append(i[text_token_len[t]+2:text_token_len[t]+2+speech_token_len[t], :]) return sos_eos_emb, text_token, task_id_emb, speech_token
def con_cat(self, sos_eos_emb, text_token, task_id_emb, speech_token, speech_token_len): lm_output = [] speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True) for i in range(len(text_token)): lm_output.append(torch.concat([sos_eos_emb[i].unsqueeze(dim=0), text_token[i], task_id_emb[i], speech_token[i]])) lm_output = pad_sequence(lm_output, batch_first=True, padding_value=IGNORE_ID) return lm_output
def forward( self, batch: dict, device: torch.device, ) -> Dict[str, Optional[torch.Tensor]]: """ Args: text: (B, L, D) text_lengths: (B,) audio: (B, T, N) or (B, T) audio_lengths: (B,) """ # import pdb # pdb.set_trace() text_token = batch['text_token'].to(device) text_token_len = batch['text_token_len'].to(device) speech_token = batch['speech_token'].to(device) speech_token_len = batch['speech_token_len'].to(device) # embedding = batch['embedding'].to(device)
# 0. pad speech token to 整数倍(pad 静音对应的 token_v2)对应 4299 speech_token_list = [] speech_token_len_list = [] # import pdb # pdb.set_trace() for i, sl in enumerate(speech_token_len): st = speech_token[i, :sl] # print(st) if sl % self.gcm != 0: speech_token_list.append(F.pad(st, (0, (sl//self.gcm+1)*self.gcm-sl), value=4299)) speech_token_len_list.append((sl//self.gcm+1)*self.gcm) else: speech_token_list.append(st) speech_token_len_list.append(sl) speech_token = pad_sequence(speech_token_list, batch_first=True, padding_value=0).to(device) speech_token_len = torch.tensor(speech_token_len_list) # 1. prepare llm_target # lm_target = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + # [self.speech_token_size]) for i in range(text_token.size(0))] lm_target = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size] * self.gcm) for i in range(text_token.size(0))] lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
# 1. encode text_token text_token = self.llm.model.model.embed_tokens(text_token)
# 2. embedding projection # embedding = F.normalize(embedding, dim=1) # embedding = self.spk_embed_affine_layer(embedding) # embedding = embedding.unsqueeze(1) # embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text_token.dtype).to(device)
# 3. eos and task_id sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
# 4. encode speech_token speech_token = self.speech_embedding(speech_token) speech_token = speech_token.view(speech_token.size(0), speech_token.size(1) // self.gcm, self.gcm*speech_token.size(2)) speech_token = self.group_embedding(speech_token) # h*cfg --> h # group task_id_emb (start code) task_id_emb = torch.concat([task_id_emb] * self.gcm, dim=2) task_id_emb = self.group_embedding(task_id_emb)
speech_token_len_gcm = speech_token_len//self.gcm # 5. unpad and pad # lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, text_token, text_token_len, task_id_emb, speech_token, speech_token_len) lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, text_token, text_token_len, task_id_emb, speech_token, speech_token_len_gcm)
# 6. run lm forward lm_output = self.llm(lm_input, lm_input_len.to(device)) # hidden_states lm_output = lm_output['hidden_states'][-1]
# # de group sos_eos_emb, text_token, task_id_emb, speech_token = self.de_group(lm_output, text_token_len, speech_token_len_gcm) speech_token = pad_sequence(speech_token, batch_first=True, padding_value=IGNORE_ID) speech_token = self.group_prediction(speech_token) # de group embedding speech_token = speech_token.view(speech_token.size(0), speech_token.size(1) * self.gcm, speech_token.size(2)//self.gcm)
task_id_emb = pad_sequence(task_id_emb, batch_first=True, padding_value=IGNORE_ID) task_id_emb = task_id_emb.unsqueeze(1) task_id_emb = self.group_prediction(task_id_emb) task_id_emb = task_id_emb.view(task_id_emb.size(0), task_id_emb.size(1) * self.gcm, task_id_emb.size(2)//self.gcm)
# cat output lm_output = self.con_cat(sos_eos_emb, text_token, task_id_emb, speech_token, speech_token_len) # lm_target 多个 stop token 可能需要 mask!这里没有处理! logits = self.llm_decoder(lm_output) loss = self.criterion_ce(logits, lm_target) acc = th_accuracy(logits.view(-1, self.speech_token_size + 3), lm_target, ignore_label=IGNORE_ID) return {'loss': loss, 'acc': acc}
@torch.inference_mode() def inference( self, text: torch.Tensor, text_len: torch.Tensor, prompt_text: torch.Tensor, prompt_text_len: torch.Tensor, prompt_speech_token: torch.Tensor, prompt_speech_token_len: torch.Tensor, embedding: torch.Tensor, sampling: int = 25, max_token_text_ratio: float = 20, min_token_text_ratio: float = 2, ) -> Generator[torch.Tensor, None, None]: # import pdb # pdb.set_trace() device = text.device text = torch.concat([prompt_text, text], dim=1) text_len += prompt_text_len text = self.llm.model.model.embed_tokens(text)
# 2. encode embedding # embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
# 3. concat llm_input sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1) task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1) if prompt_speech_token_len != 0: if prompt_speech_token_len % self.gcm != 0: prompt_speech_token = F.pad(prompt_speech_token, (0, (prompt_speech_token_len//self.gcm+1)*self.gcm-prompt_speech_token_len), value=4299) prompt_speech_token_emb = self.speech_embedding(prompt_speech_token) else: prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device) # group code modeling prompt_speech_token_emb = prompt_speech_token_emb.view(prompt_speech_token_emb.size(0), prompt_speech_token_emb.size(1) // self.gcm, self.gcm*prompt_speech_token_emb.size(2)) prompt_speech_token_emb = self.group_embedding(prompt_speech_token_emb) # h*cfg --> h # group task_id_emb (start code) task_id_emb = torch.concat([task_id_emb] * self.gcm, dim=2) # [1, 1, 2048] task_id_emb = self.group_embedding(task_id_emb) # [1, 1, 1024] lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 4. cal min/max_length min_len = int((text_len - prompt_text_len) * min_token_text_ratio) max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
# 5. step by step decode out_tokens = [] cache = None for i in range(max_len): y_pred, cache = self.llm.forward_one_step(lm_input, masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool), cache=cache) y_pred_split = self.group_prediction(y_pred[:, -1]) y_pred_split = y_pred_split.view(y_pred_split.size(0) * self.gcm, y_pred_split.size(1)//self.gcm) logp = self.llm_decoder(y_pred_split).log_softmax(dim=-1) llm_input = [] for gcm_id in range(self.gcm): logp_i = logp[gcm_id] top_ids_i = self.sampling_ids(logp_i.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item() # print(top_ids_i) if top_ids_i == self.speech_token_size: break yield top_ids_i out_tokens.append(top_ids_i) llm_input_i = self.speech_embedding.weight[top_ids_i].reshape(1, 1, -1) llm_input.append(llm_input_i) if len(llm_input) < self.gcm: break llm_input = torch.concat(llm_input, dim=1) llm_input = llm_input.view(llm_input.size(0), llm_input.size(1) // self.gcm, self.gcm*llm_input.size(2)) lm_input = self.group_embedding(llm_input)
|