| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 
 | class VoiceCLIP(nn.Module):"""
 CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
 transcribed text.
 
 Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
 """
 
 def __init__(
 self,
 *,
 dim_text=512,
 dim_speech=512,
 dim_latent=512,
 num_text_tokens=256,
 text_enc_depth=6,
 text_seq_len=120,
 text_heads=8,
 num_speech_tokens=8192,
 speech_enc_depth=6,
 speech_heads=8,
 speech_seq_len=250,
 text_mask_percentage=0,
 voice_mask_percentage=0,
 wav_token_compression=1024,
 use_xformers=False,
 clip_mels=False,
 min_mel_size=10,  # Default is approximately .5sec with default mel specs.
 distributed_collect=False,
 ):
 super().__init__()
 # nn.Embedding
 self.text_emb = mbnb.nn.Embedding(num_text_tokens, dim_text)
 self.to_text_latent = mbnb.nn.Linear(dim_text, dim_latent, bias=False)
 
 # nn.Embedding
 self.speech_emb = mbnb.nn.Embedding(num_speech_tokens, dim_speech)
 self.to_speech_latent = mbnb.nn.Linear(dim_speech, dim_latent, bias=False)
 
 if use_xformers:
 self.text_transformer = CheckpointedXTransformerEncoder(
 needs_permute=False,
 exit_permute=False,
 max_seq_len=-1,
 attn_layers=Encoder(
 dim=dim_text,
 depth=text_enc_depth,
 heads=text_heads,
 ff_dropout=.1,
 ff_mult=2,
 attn_dropout=.1,
 use_rmsnorm=True,
 ff_glu=True,
 rotary_pos_emb=True,
 ))
 self.speech_transformer = CheckpointedXTransformerEncoder(
 needs_permute=False,
 exit_permute=False,
 max_seq_len=-1,
 attn_layers=Encoder(
 dim=dim_speech,
 depth=speech_enc_depth,
 heads=speech_heads,
 ff_dropout=.1,
 ff_mult=2,
 attn_dropout=.1,
 use_rmsnorm=True,
 ff_glu=True,
 rotary_pos_emb=True,
 ))
 else:
 self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
 heads=text_heads)
 self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
 depth=speech_enc_depth, heads=speech_heads)
 
 self.temperature = nn.Parameter(torch.tensor(1.))
 self.text_mask_percentage = text_mask_percentage
 self.voice_mask_percentage = voice_mask_percentage
 self.wav_token_compression = wav_token_compression
 self.xformers = use_xformers
 self.clip_mels = clip_mels
 self.min_mel_size = min_mel_size
 self.distributed_collect = distributed_collect
 if not use_xformers:
 # nn.Embedding
 self.text_pos_emb = mbnb.nn.Embedding(text_seq_len, dim_text)
 # nn.Embedding
 self.speech_pos_emb = mbnb.nn.Embedding(num_speech_tokens, dim_speech)
 
 def embed_text(self, text):
 text_mask = torch.ones_like(text.float()).bool()
 text_emb = self.text_emb(text)
 enc_text = self.text_transformer(text_emb, mask=text_mask)
 text_latents = masked_mean(enc_text, text_mask, dim=1)
 text_latents = self.to_text_latent(text_latents)
 return text_latents
 
 def forward(
 self,
 text,
 speech_tokens,
 return_loss=True
 ):
 # print(f"text: {text}, speech_token: {speech_tokens}")
 # print(f"text shape: {text.shape}, speech_token shape: {speech_tokens.shape}")
 
 b, device = text.shape[0], text.device
 if self.training:
 if self.clip_mels:
 margin = speech_tokens.shape[-1] - self.min_mel_size
 speech_tokens = speech_tokens[:, :self.min_mel_size+randint(0,margin)]
 voice_mask = torch.ones_like(speech_tokens.float()).bool()  # Disable voice masking in this case.
 else:
 voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
 text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
 else:
 text_mask = torch.ones_like(text.float()).bool()
 voice_mask = torch.ones_like(speech_tokens.float()).bool()
 text_emb = self.text_emb(text)
 speech_emb = self.speech_emb(speech_tokens)
 
 if not self.xformers:
 text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
 speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
 
 enc_text = self.text_transformer(text_emb, mask=text_mask)
 enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
 
 text_latents = masked_mean(enc_text, text_mask, dim=1)
 speech_latents = masked_mean(enc_speech, voice_mask, dim=1)
 
 text_latents = self.to_text_latent(text_latents)
 speech_latents = self.to_speech_latent(speech_latents)
 
 if self.distributed_collect:
 collective = [torch.zeros_like(text_latents) for _ in range(torch.distributed.get_world_size())]
 torch.distributed.all_gather(collective, text_latents)
 collective[torch.distributed.get_rank()] = text_latents  # For gradient propagation.
 text_latents = torch.cat(collective, dim=0)
 collective = [torch.zeros_like(speech_latents) for _ in range(torch.distributed.get_world_size())]
 collective[torch.distributed.get_rank()] = speech_latents  # For gradient propagation.
 torch.distributed.all_gather(collective, speech_latents)
 speech_latents = torch.cat(collective, dim=0)
 b = text_latents.shape[0]
 
 text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
 
 temp = self.temperature.exp()
 
 if not return_loss:
 sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
 return sim
 
 sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
 labels = torch.arange(b, device=device)
 loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
 return loss
 
 |